Effects of larval density on the fitness of the Asian tiger mosquito (Aedes albopictus)

Courtney Schreiner, a student at the University of Idaho, collaborated with fellow REU student Taryn Waite, along with Nicole Solano, Dr. Courtney Murdock, and Dr. Craig Osenberg.

Abstract: We were interested in studying the effects of larval density on the fitness of the Asian tiger mosquito (Aedes albopictus)­­. Aedes albopictus live all around Georgia and in various types of habitats that can support varying amounts of larvae. This creates competition which can effect downstream traits like fitness and disease transmission. Our experiment took place in a semi-field enclosure. We had 7 different larval density treatments that ranged from 5 to 240 larvae in each jar, for a total of 92 jars. Daily emergence, sex ratio and wing size were all recorded for all emerged mosquitoes. Overall we found that the proportion that survived, proportion female, fecundity, and wing size all decreased as density increased. We calculated the intrinsic growth rate using these estimates and found that lower densities have a higher intrinsic growth rate than those at lower densities. This told us that mosquitoes have a higher fitness at lower densities. Which also means that higher disease transmission would also be found in lower densities.