Behavioral and environmental determinants of parasite transmission in a butterfly host

Chastity Ward, a senior from Fayetteville State University, worked on a project with Dr. Sonia Altizer, Dr. Richard Hall and Dr. Paola Barriga to examine how parasites of the Monarch butterfly are transmitted.

Abstract:  Many pathogens can be transmitted when infectious stages shed into the environment are later encountered by susceptible hosts. Environmental transmission is common among insect parasites, and also occurs for human diseases such as cholera and polio. Understanding how host behavior and environmental variables affect the shedding of infectious stages is crucial for predicting patterns of infection risk. Monarch butterflies Danaus plexippus are commonly infected by the protozoan Ophryocystis elektroscirrha (OE); this parasite is transmitted environmentally when infected adults deposit spores onto host plants (milkweed) that are consumed by monarch larvae. To quantify host contact with milkweeds as an estimate of parasite transmission, we set up outdoor flight cages with adult monarchs and milkweed plants. Cages varied in the number of adult monarchs and milkweed plants, and were assigned to one of two milkweed species. We used captive-raised monarchs from several genetic lineages, and marked the monarchs with unique number and color codes to track activity. We observed cages for replicate intervals over a week-long period, during which we noted observed monarch contacts with plants, and recorded monarch and plant identity, activity type, temperature, weather, and time of day. Our results showed strong heterogeneity in plant visitation rates among monarchs that was best explained by monarch sex (females had 4.7 times higher visitation rates than males, owing to frequent oviposition on milkweeds).  We also found wide variation among individual plants in the number of visits by monarchs. Milkweed species, plant flowering status and plant leaf number did not affect visitation rates, but plants in cages with a higher number of monarchs were visited more frequently. In sum, our findings provided evidence for individual monarch’s serving as superspreaders of infection, and for some milkweed plants serving as hotspots of infection. This study provides a starting point for estimating environmental parasite transmission in wild milkweed patches, and suggests that individual-level heterogeneity might be more important than environmental variation in driving parasite transmission in this system.

 

Download (PDF, 4.56MB)