Predictors for SARS-CoV-2 Seropositivity in Owned and Feral Cats in North Georgia
Sarah E. Blankespoor1, Elizabeth M. Warburton2, Keyla Nuñez3, and S. Mark Tompkins3

1California Polytechnic State University, San Luis Obispo, CA, 2Center for the Ecology of Infectious Diseases, Odum School of Ecology, University of Georgia, Athens, GA, 3Center for Vaccines and Immunology, University of Georgia, Athens, GA

Introduction
- Little is known about dynamics of SARS-CoV-2 in animal populations. Cats interact with many other species and could drive interspecies transmission.
- Feral cats are mostly nocturnal; owned cats are mostly active outside during the day, reducing contact between these populations.
- Higher seropositivity (presence of pathogen-specific antibody) rates found in cats living with positive humans as opposed to unknown humans. Cat-to-cat transmission demonstrated in lab settings.
- Goal: Evaluate predictors for SARS-CoV-2 seropositivity in feral and owned cats.
- Hypothesis: Increased contact with humans predicts higher SARS-CoV-2 seropositivity rates.
- Prediction: Owned cats will have higher seropositivity rates than feral cats. Cats in areas with higher human population densities and human case loads will have higher seropositivity rates.

Methods
- Collection of feline blood samples
 - Owned cats brought to the veterinary teaching hospital at the University of Georgia 06/2021-06/2022.
 - Feral cats captured and sampled at shelters 01/2022-06/2022.
- Lab analysis of serum using ELISAs
- Detection of anti-SARS-CoV-2 antibodies with indirect Enzyme-Linked Immunosorbent Assays (ELISAs).
- Absorbance of samples compared to positive control using Normalized Absorbance Ratio.

Other data used
- 2020 census population data for counties & zip code tabulation areas.

Data analysis & modeling
- For owned cats, binary logistic regression model in R for seropositivity predictors: sex, metro area, total human cases to date, days since 1st Georgia COVID-19 case.
- Feral cats excluded from model due to lack of positive samples.
- Human cases to date: average human case load to date for each county the cat’s zip code of origin is in, weighted by the proportion of the zip code in each county.

Results
1. Total Seropositivity Rates - 0% for ferals, 5.2% for owned cats.
 - For feral cats with n=33, none of the samples were positive.
 - For owned cats with n=193, 10 samples were positive (5.2%).

Figure 1: Geographic distribution of owned cats brought to the UGA Veterinary Teaching Hospital with SARS-CoV-2 seropositively shown.

2. Models: Human cases to date and days since start are important.
 - Best fit logistic regression models determined through multi-model inference and Akaike Information Criterion (AIC).
 - Cumulative human cases by county and days since the pandemic started were the only terms in the 3 top models.

<table>
<thead>
<tr>
<th>Model rank</th>
<th>DF</th>
<th>logLik</th>
<th>AICc</th>
<th>delta</th>
<th>weight</th>
<th>Intercept</th>
<th>Days since start</th>
<th>Humans cases</th>
<th>Days since Human cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>-29.94</td>
<td>64.0</td>
<td>0.74</td>
<td>0.228</td>
<td>-3.193e+00</td>
<td>8.433e-06</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>-30.155</td>
<td>64.4</td>
<td>1.16</td>
<td>0.186</td>
<td>-5.156e-01</td>
<td>-3.575e-02</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>-29.371</td>
<td>64.9</td>
<td>1.68</td>
<td>0.143</td>
<td>-6.542e-01</td>
<td>-4.100e-03</td>
<td>9.899e-06</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>-29.215</td>
<td>66.7</td>
<td>3.49</td>
<td>0.058</td>
<td>-2.300e-00</td>
<td>-1.621e-03</td>
<td>3.806e-05</td>
<td>-14.171e-08</td>
</tr>
</tbody>
</table>

Table 1: Best models developed using the dredge function from the MuMln R package. Models 1, 2, and 3 are equivalent. Model 4 is shown for comparison. Model rank, delta values, and terms from these three equivalent models are bolded.

3. Antibody duration and repeat positives.
 - One cat was positive twice 3 months apart showing lasting antibodies.
 - One cat had a low positive (25% NAR value) on 11/3/21 and a high positive on 11/12/21.
 - All negative cats present multiple times in the dataset remained negative.

Conclusions
1. Evidence that cats acquire SARS-CoV-2 from people rather than cats or wildlife.
 - Importance of human case loads to likelihood of cats being infected.
 - Potentially reduced risk to ferals due to lower human contact.
 - Consistent with findings of higher positivity rates in cats from positive households.

2. The spread of SARS-CoV-2 in humans has a rippling effect on the ecosystem.
 - As human infection spikes, cat infections also spike, increasing the potential for transmission between cats and transmission from cats to other species, such as pets or wildlife.
 - Hotspots for human transmission are also hotspots for human-to-cat transmission.

 - Antibody titers increase as infection starts and may last for three months or more.

4. The general population should be aware that cats from positive households can become infected with SARS-CoV-2 and may be contagious to other cats or wildlife.

Future Research
- Additional collection and analysis of feral samples to obtain larger sample size.
- Analysis of feral nasal swabs for active infection.
- Impact of owned cat health status on seropositivity.
- Longitudinal study to assess feline antibody duration and potential lasting immunity.
- Coinfection dynamics with immunosuppressive pathogens such as feline immunodeficiency virus (FIV).

Acknowledgements
Support for this research was provided by the National Science Foundation (grant #1659683) through the Population Biology of Infectious Diseases Undergraduate Research program. Thank you to Cheryl Jones, Sean Ray, and other members of the Tompkins lab for assistance with laboratory methods and feedback. Thank you to the Strauss lab for feedback. Thank you to Andrew Kitchin at Madison Oilgolds Animal Shelter and Crystal Evans at Athens Area Humane Society for providing feral cat blood and nasal swab samples. Thank you to Bridget Gardner at the USA Veterinary Teaching Hospital for providing owned cat serum samples. We acknowledge that this research was performed on the unceded traditional land of the Muscogee, Yuchi, Creek, and Cherokee peoples.