Influenza Inoculum Dose and Disease Outcome

Wei-En Lu¹, Brian McKay², Andreas Handel²

¹Department of Mathematics, Grove City College, Grove City PA, ²Department of Epidemiology & Biostatistics University of Georgia, Athens GA

ABSTRACT

Data Collection

Data for this analysis was obtained from influenza challenge studies where individuals are inoculated with influenza virus (Figure 1). A systematic review and data abstraction were performed. In the data abstraction phase, we collected information on study design, study participants, and study outcomes. Each study can have multiple sub-studies where individuals are challenged by different influenza virus and varying inoculum dose.

RESULTS

• Inoculum dose has a positive relationship on the proportion infected. However, there was a negative trend between inoculum dose and proportion of fever or systemic symptoms and between inoculum dose and the mean peak viral titers. There was also a rise of inoculum dose given to individuals and a decrease in the proportion of individuals with disease outcome over time.

CONCLUSION

• The trends over time indicates a weakening of wild-type influenza virus used in challenge studies.

• The negative trends observed may not be the result of systematic differences in challenge studies but are instead explained by an unknown immunologic mechanism.

METHODS

Data Collection

Data for this analysis was obtained from influenza challenge studies where individuals are inoculated with influenza virus (Figure 1). A systematic review and data abstraction were performed. In the data abstraction phase, we collected information on study design, study participants, and study outcomes. Each study can have multiple sub-studies where individuals are challenged by different influenza virus and varying inoculum dose.

Influenza Challenge Study

Healthy → Infection → Infected → Ill

Figure 1: In a challenge study a healthy volunteer is inoculated with influenza virus and monitored for specific outcomes.

Data Model

An exponential model was used to fit the proportion infected as function of dose (D):

\[P_{\text{infected}}(D) = 1 - e^{-D} \]

RESULTS CONTIN.

A linear model was used to analyze remaining relationships:

\[P_{\text{infected}}(D) = b_1 D + b_0 \]

Figure 2: Inoculum dose impact weighted by study group size on (1) Proportion infected. (2) Proportion with systemic illness or fever. (3) Mean peak viral titer. (a) Stratified by virus prep. (b) Wild-type stratified by virus type. (c) Influenza A wild-type stratified by subtype.

Figure 3: Published year impact weighted by study group size on (1) Inoculum dose. (2) Proportion with systemic illness or fever. (a) Wild-type. (b) Wild-type stratified by virus type. (c) Influenza A wild-type stratified by subtype.

A positive link between inoculum dose and proportion infected (Figure 2.1) and a negative trend between proportion with fever and inoculum dose was observed (Figure 2.2). These findings are supported by previous research [1,2]. However, an unanticipated negative trend between mean peak viral titer and inoculum dose was observed (Figure 2.3).

An attempt to explain the unexpected negative trends, we explored possible systematic differences between studies. Overall, inoculum dose has increased (Figure 3.1) and mean peak and proportion with fever or systemic symptoms has decreased over time (Figure 3.2 & 3.3).

CONCLUSION

• The trends over time indicates a weakening of wild-type influenza virus used in challenge studies.

• The negative trends observed may not be the result of systematic differences in challenge studies but are instead explained by an unknown immunologic mechanism.
