Predicting the Effectiveness of Novel Tuberculosis Treatment Regimens

Taylor Joseph¹ and Andreas Handel²

¹Michigan State University, East Lansing, MI
²Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA

Background
- Tuberculosis (TB) is a prevalent disease, as it infects approximately one-third of the world’s population.
- Standard treatment of TB consists of four different drugs and lasts at least six months.
- There is need for new treatment regimens, as the existing treatment plan is long and may inflict harsh side-effects—often leading to patient non-compliance and drug-resistant bacteria.
- Human trials are not always ideal, as they are expensive and time consuming. Safety concerns and ethical issues may also arise when testing new drugs or treatment regimens on human subjects.
- Mathematical models can be used as a supplement or alternative to human and animal trials in testing different treatment regimens.

Objective
- Implement a mathematical model that accurately simulates existing drug treatments of tuberculosis.
- Use this mathematical model to simulate new treatment regimens and predict their effectiveness.

Model Equations
- \(\dot{B}_x = r_x B_x \left(1 - \frac{B_x}{N_x} \right) - \delta_x B_x - \mu_x B_x + \mu_p B_p - \sum f_{i,x} B_x \)
- \(\dot{B}_p = r_p B_x \left(1 - \frac{B_p}{N_p} \right) - \delta_p B_p - \mu_p B_p + \mu_x B_x - \sum f_{i,p} B_p \)
- \(\dot{C}_i(t) = C_i(t) + C_{0,i} \) every T hours
- \(f_{i,p} = \frac{k_{p,r} C_i}{C_i + C_{50} f_{p,r}} \)

Drug Model

A comparison between our model and experimental data of drug concentrations of rifampin (600 mg dose) in the pulmonary epithelial lining fluid.

Model Comparisons
- Both Figures show the median and interquartile ranges of bacteria counts upon simulated treatment of 1000 patients.

Success Rate Comparison

All Figures show success rates of treatment of 500 simulated patients. Success occurs if less than 1 bacterium is present per kiloliter; apparent failure occurs if more than 100 bacteria are present per milliliter. Inapparent failure occurs when bacteria loads are between these two values. In this case, patients appear to be cured, but often are not.

(1) Eight weeks of HRZE followed by 18 weeks of HR daily
(2) Two months of HRZE daily, followed by six months of EH daily
(3) Eight weeks of moxifloxacin (M) along with HRZ daily, followed by nine weeks of MHR daily
(4) Two months of HRZ followed by four months of HR taken twice weekly

Conclusions and Future Work
- Newer treatment regimens (such as PaMZ) may be more effective overall in treating TB than standard regimens, and in a much shorter amount of time. Conversely, other treatments (such as JPaZ) may not perform as well as hoped.
- Our model should be worked on further to improve accuracy. Such improvements might include considering interactions between drugs, as well as modeling an immune response.
- New regimens should be thought of and then tested using our model.

Acknowledgments
This research was funded by a National Science Foundation REU grant at the University of Georgia.

PaMZ Trials
The TB Alliance is conducting clinical trials on a treatment regimen consisting of pretomanid, moxifloxacin, and pyrazinamide, taken daily over eight weeks.

The left and right graphs show this regimen with a 200 mg dose and a 100 mg dose of pretomanid, respectively.

JPaZ Trials
Clinical trials are also in progress for a treatment plan including bedaquiline, pretomanid, and pyrazinamide.

Studies have only been done over 14 days of treatment. We run treatment for eight weeks with our model to predict long-term results of this regimen.