Exploring links between mosquitoes, the environment, and disease transmission

The Asian tiger mosquito, Aedes albopictus is one of the most highly invasive mosquito species seen to date.  The physiological and ecological plasticity of Ae. albopictus has led to its rapid global expansion.  Additionally, its ability to vector a wide-range of recently emerging arboviruses, such as dengue and Chikungunya, make it a significant public health threat.  The transmission of many mosquito-borne pathogens is strongly influenced by environmental temperature due to effects on the physiology of the insect vector and the pathogen.  Therefore, changes in local environmental conditions could significantly impact the distributions and dynamics of a range of mosquito-borne diseases.  Predicting the extent of possible changes in disease dynamics will require a detailed understanding of how a suite of mosquito-pathogen traits respond to variation in environmental temperature and other biotic factors. Projects can explore the following potential questions: 1) what are the microclimate conditions mosquitoes experience in the larval environment and relevant transmission settings?, 2) how does thermal variation influence mosquito life history traits relevant for transmission (e.g. larval development rates, larval survival, adult longevity)?, 3) can we use remotely sensed data to predict relevant mosquito microclimate?, or 4) what factors contribute to Ae. albopictus oviposition behavior and density-dependence in the larval environment. We are looking for two REU students that are interested in combining field work with computational approaches to carry out projects in the Athen’s system this summer mentored by Drs. Courtney Murdock (Infectious Diseases & Odum School of Ecology) and Craig Osenberg (Odum School of Ecology).

Host Laboratories: Courtney Murdock and Craig Osenberg
Type of Project: Combination of Empirical/Field-based, and Computational/Computer-based